Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/− hearts
نویسندگان
چکیده
AIM To test a hypothesis attributing arrhythmia in Brugada Syndrome to right ventricular (RV) outflow tract (RVOT) conduction abnormalities arising from Nav 1.5 insufficiency and fibrotic change. METHODS Arrhythmic properties of Langendorff-perfused Scn5a+/- and wild-type mouse hearts were correlated with ventricular effective refractory periods (VERPs), multi-electrode array (MEA) measurements of action potential (AP) conduction velocities and dispersions in conduction direction (CD), Nav 1.5 expression levels, and fibrotic change, as measured at the RVOT and RV. Two-way anova was used to test for both independent and interacting effects of anatomical region and genotype on these parameters. RESULTS Scn5a+/- hearts showed greater arrhythmic frequencies during programmed electrical stimulation at the RVOT but not the RV. The Scn5a+/- genotype caused an independent increase of VERP regardless of whether the recording site was the RVOT or RV. Effective AP conduction velocities (CV†s), derived from fitting regression planes to arrays of observed local activation times were reduced in Scn5a+/- hearts and at the RVOT independently. AP conduction velocity magnitudes derived by averaging MEA results from local vector analyses, CV*, were reduced by the Scn5a+/- genotype alone. In contrast, dispersions in conduction direction, were greater in the RVOT than the RV, when the atrioventricular node was used as the pacing site. The observed reductions in Nav 1.5 expression were attributable to Scn5a+/-, whereas increased levels of fibrosis were associated with the RVOT. CONCLUSIONS The Scn5a+/- RVOT recapitulates clinical findings of increased arrhythmogenicity through reduced CV† reflecting reduced CV* attributable to reduced Nav 1.5 expression and increased CD attributable to fibrosis.
منابع مشابه
Spatial and temporal heterogeneities are localized to the right ventricular outflow tract in a heterozygotic Scn5a mouse model
Ventricular tachycardia (VT) in Brugada Syndrome patients often originates in the right ventricular outflow tract (RVOT). We explore the physiological basis for this observation using murine whole heart preparations. Ventricular bipolar electrograms and monophasic action potentials were recorded from seven epicardial positions in Langendorff-perfused wild-type and Scn5a+/- hearts. VT first appe...
متن کاملIncreased Right Ventricular Repolarization Gradients Promote Arrhythmogenesis in a Murine Model of Brugada Syndrome
INTRODUCTION Brugada syndrome (BrS) is associated with loss of Na(+) channel function and increased risks of a ventricular tachycardia exacerbated by flecainide but reduced by quinidine. Previous studies in nongenetic models have implicated both altered conduction times and repolarization gradients in this arrhythmogenicity. We compared activation latencies and spatial differences in action pot...
متن کاملReduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract.
RATIONALE In patients with Brugada syndrome, arrhythmias typically originate in the right ventricular outflow tract (RVOT). The RVOT develops from the slowly conducting embryonic outflow tract. OBJECTIVE We hypothesize that this embryonic phenotype is maintained in the fetal and adult RVOT and leads to conduction slowing, especially after sodium current reduction. METHODS AND RESULTS We det...
متن کاملGenetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias.
SCN5A encodes the α subunit of the major cardiac sodium channel Na(V)1.5. Mutations in SCN5A are associated with conduction disease and ventricular fibrillation (VF); however, the mechanisms that link loss of sodium channel function to arrhythmic instability remain unresolved. Here, we generated a large-animal model of a human cardiac sodium channelopathy in pigs, which have cardiac structure a...
متن کاملAction potential wavelength restitution predicts alternans and arrhythmia in murine Scn5a+/− hearts
Reductions in cardiac action potential wavelength, and the consequent wavebreak, have been implicated in arrhythmogenesis. Tachyarrhythmias are more common in the Brugada syndrome, particularly following pharmacological challenge, previously modelled using Scn5a(+/-) murine hearts. Propagation latencies and action potential durations (APDs) from monophasic action potential recordings were used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 211 شماره
صفحات -
تاریخ انتشار 2014